
/

/I " _ t / 7__I

Curvature Continuity in Arbitrary
Bicubic Bezier Patches

Final Report

Robert L. Roach

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0150

Contract NAG-l*1039

NASA-Langley Research Center
Hampton, VA 23665-5225

[.::',Sl. I 2_;;.
< .7 / I_

Curvature Continuity in Arbitrary
Bicubic Bezier Patches

Abstract

The following document outlines two methods for imposing interpatch curvature
continuity in existing Bezier bicubic patch surfaces. Each method assumes that coordinates
of the comers of the patches can not be altered but the interior Bezier control points can.
Each method also preserves outer edge slope and outer corner twist derivatives. Neither

method requires intersection or CO continuity nor slope or C 1 continuity at the start. A
computer program for each method is given in the appendices.

Background

Computer-aided geometric design uses many forms of surface representation.
Among the most popular to date are those which some use of cubic polynomials. The
cubic polynomials can be easily manipulated in many instances and makes the difficult
numerical problem of finding patch intersections more tractable than would some more
complex functions. The cubic polynomial is also chosen since it is the minimum order
polynomial which can satisfy curvature continuity constraints desirable in many
applications [1]. Curvature continuity is important in many applications since the
smoothness of a surface demands a small rates of change of curvature except at comers.

Given surfaces are fxequently represented by patches consisting of smaller pieces of
a whole surface. Each patch may be represented by a 2 dimensional array of coordinate
points which lie on the surface. The designer then frequently needs to be able to faithfully
interpolate between these given points. This brings in the frequent use of splines for
surface representation and will be used here. However, the designer frequently does want
to know all the spline details and would prefer to have a representation of the surfaces such
that he may easily manipulate the shape. This can be done easily with Cubic Bezier
surfaces, the control points of which locally control the shape of the surface. Hence the
designer may "lock on" to one of the control points and "drag" it to a new location, causing
a controllable distortion of the nearby surface. We next examine some detail of the bicubic
Bezier patch.

In a given patch with n x m points, there are (n-l) x (m-l) subpatches. Each
subpatch has four points at its comers. This may be all the data that the designer has to
start with. If the overall patch is to be mated with other patches then the surface slope
normaI to the edge would likely be specified. Within each subpatch, a bicubic Bezier
surface has 16 control points in a 4 x 4 array. The bicubic surface and all properties are
completely specified by these control points since the basis functions are also specified.
Four of these control points lie at the comers. Eight more lie along the edges and four are
in the interior of the subpatch. Locations of the control points not on the comers control
the surface curvature, slope, and position.

The Bezier representation, while simple to formulate and manipulate, does not
necessarily give the user first or second derivative continuity between adjacent patches.
Trying to provide such continuity by eye will be approximate at best for the slope
continuity and not doable for the other. As a consequence a post processing capability is
envisioned in which the user has generated the surface as close as possible to his own
specifications and then his surface is modified in some minimal way to ensure slope and
curvature continuity. This minimal way would most likely correspond to leaving those
features intact that the designer would also choose, such as the boundary points and

particular surface points at the corners of each subpatch. Further, the outer edge slope may
be important and should be kept. Thus the post processing subroutine would only change
the relative positions of the subpatch interior control points and those between the subpatch

corner points.

This stillleavesa number of degrees of freedom allof which can be shown to be
relatedtothe manner inwhich the "twist"derivativesarccomputed. The twistderivatives

arc second derivativesof the components of the position vector with respect to the

parameters s and t, ie. Xst at corners. An original method by Ferguson [1] required these

twist derivatives to simply be zero. While this gives the requisite slope and curvature
continuity, apparently fiat spots existed at the subpatch comers. Thus, this method was not
deemed suitable.

Two other methods suggest themselves. In each, nonzero twist vectors result, but

only the second method specificallyuses them. The methods are similarin thatin each,

cubic splinesarc firstplaced through allsubpatch cornersas willbe described. They thus
both seek todetermine the elements of the biparamctricsurfacecubic for each subpatch.

Cubic splincsthrough thesubpatch cornersdetermine 12 of the 16 elements. The methods

differin the ncxt step,thatof computing theremaining elements of the biparamctriccubic
matriccs.

Analysis

Consider the large patch shown in Fig. I. The patch consists of m subpatches in
the t direction and n subpatches in the s direction. On each subpatch, there exists the 16
Bczier control points numbered 0-15. The numbering of the control points and the

corresponding directions are consistent with the numbering system used by the NASA-
Langley SMART program.The four on the corners are coincident with the corners of the
subpatch and are to be retained.

The main idea of the procedures to be described is that slope and curvature

continuitycan be attainedby fastswitchingfrom a Bezierrepresentationto a cubic spline

representationforthe surfaces.Cubic splinecurvesthrough datapointsin space have such

continuityatallpoints. Itisalsofortunatethata ratherconvenient setof relationsexist
between the Bezier curves and cubic splinecurves of the same order making ita simple

matter to switch back and forth.By using cubic splincsin both directions,itshould be

possible to effectthe same for the surfaces. The biparamctric cubic spline surface

representationof a singlesubpatch surfaceischaracterizedby a 4x4 coefficientmatrix.
Once the 16 elements of thismatrix are determined for each subpatch, the Bezicr

coefficientscan be determined.

Thus, cubic splinesarcplaced through allthe subpatch corners,from one edge of

the largepatch to the other in both the tand s directions.The slope of the large patch

around the edges isalsoretainedas theextrainformationrequiredof the ends of the cubic

splincs. Once the cubic splinesarc determined along the subpatch edges, 12 of the 16
matrixelements are known. This leaves4 unknown and correspondsto not knowing the 4

interiorBczier control point locations. At thispoint,we describe two methods for

determining these coefficientsin such a manner thatslope and curvature continuityare

assuredacrosssubpatch boundaries.

Method 1. Splines Fit through Second Derivatives

It is well known that curvature is related to second derivatives. It is also known

that the cubic splines through the subpatch comers provide second derivative continuity

tangential to subpatch edges. What is not guaranteed is second derivative continuity normal
to the edges. Thus, this method is based on putting cubic splines through the second
derivatives of one parameter in the direction of the other, ie. putting splines through xtt in

the s direction. This allows the computation of the missing elements of the biparametric
cubic coefficient matrix and directly assures second derivative continuity across subpatch

edges. It also turns out that if splines had been placed on xss in the t direction, the same
result would have been obtained. A program written in QuickBasic which performs this

task is given in Appendix A.

Method 2. Twist Derivative Method

In this method, the large patch comer twist derivatives, Xst, are computed from the

original Bezier coefficients. Next, cubic splines are placed through xt in the s direction on
the outer two s boundaries of the large patch. The original twist derivatives are used as

slope end conditions for these two splines. With Xst now available on these two edges,

they are used as the slope end conditions of cubic splines placed through Xs in the t

direction. The remaining twist derivatives are then computed from these splines. Knowing
the twist derivatives at each of the subpatch comers allows the completion of the

biparametric cubic coefficient matrices. A QuickBasic program written to effect this

computation is given in Appendix B.

Computation of the New Bezier Coefficients

Once the biparametric cubic surfaces are known from either method above, standard
relationships are used to compute the new Bezier control point locations. These are then
returned to the in place of the original set. The programs in the appendices perform this
computation. The new set has changed all Bezier control point locations except those along
the large patch edges, those immediately adjacent to the outer edges, and those at all

subpatch comers.

Results

Each of the subpatches in the 3x3 patch shown in Fig. 1 were originally fiat
surfaces with Bezier control point locations coplanar with the subpatch edges. The second
method was used to generate the new set of control points which is shown in Fig. 2. The
outside edges are all still nearly fiat as these were left intact in the procedure. This gives the
highest curvature at the vertical intersections between the subpatches. That the second
derivative continuity has been accomplished is shown in Fig. 3-8. Each of these is a
contour plot of lines of constant second derivative on the large patch. It can be seen that
each of the contours is continuous with no breaks. There are comers on some of them

indicating a lack of C3 continuity at these points. These occur only at subpatch edges.

References

1. Ferguson,J.C., "Multivariate Curve Interpolation," Journal ACM, Vol. 11, No. 2,

Feb. 1964, pp.221-228.

2. Faux, I.D. and M.J. Pratt, Comvutatlonal Geometry for Desi2n and Manufacture,
ISBN 0-85312-114-1, Ellis Horwoocl Ltd, West Sussex,England, 1979.

Fig. 1 3x3 Large pitch with fLat oubpotches

0 0

C] D

Fig. 2 He_ controL point Locat|cx_ on Large patch
Imd some smoothed surface Lines.

F|g.3 xtt col_tours

Fig. 4 Ytt co4_tours

Fig. 5 ztt contours

Fig. 6 Xss contours

Fig. 7 Yss contours

Fig. 8 Zss contours

Appendix A.

Method 1. Cubic Splines through Second Derivatives

REM
REM

PROGRAM BPCS - Bi-Parametric Cubic Spline

REM

REM

REM

REM

REM

REM

REM

REM

REM XX, YY, ZZ

REM X,Y,Z

REM II, JJ
REM N

REM ND

REM

REM AX, BX, CX

REM AY, BY, CY

REM AZ, BZ, CZ
REM

REM AXT, BXT, CXT

REM AYT, BYT, CYT

REM AZT, BZT, CZT
REM

REM AXS, BXS, CXS

REM AYS, BYS, CYS

REM AZS, BZS, CZS
REM

REM KX, KY, KZ
REM

REM

DEFDBL A-Z

This program computes a hi-cubic interpolating function

through a rectangular array of coordinate data with curvature

continuity along all interior patches. This is done by fit-

ting cubic splines along rows of points in each direction.

Then,the second derivatives of the interpolating functions

are "splined" in the other paramentric direction.

Coordinate data

Data through which a spline is fit
of coords in T-direction,S-direction

of points fed to PC Spline subroutine

of space dimensions (ie. = 3 for 3D)

Coeff's of splines for X from PCSSUB

Coeff's of splines for Y from PCSSUB

Coeff's of splines for Z from PCSSUB

Coeff's of T-lines for X

Coeff's of T-lines for Y

Coeff's of T-lines for Z

Coeff's of S-lines for X

Coeff's of S-lines for Y

Coeff's of S-lines for Z

Coeff's of biparametric patches

DIM XX(21,21),YY(21,21),ZZ(21,21)

DIM X(21),Y(21),Z(21)

DIM A(21),B(21),C(21)

DIM AX(21),BX(21),CX(21)

DIM AY(21),BY(21),CY(21)

DIM AZ(21),BZ(21),CZ(21)
DIM AXT(21,15),BXT(21,15),CXT(21,15)

DIM AYT(21,15),BYT(21,15),CYT(21,15)

DIM AZT(21,15),BZT(21,15),CZT(21,15)

DIM AXS(21,15),BXS(21,15),CXS(21,15)

DIM AYS(21,15),BYS(21,15),CYS(21,15)

DIM AZS(21,15),BZS(21,15),CZS(21,15)

DIM D(21),E(21),F(21)

DIM XTT (21,15) ,YTT(21,15), ZTT(21,15)

DIM XSS(21,15),YSS(21,15),ZSS(21,15)
DIM XV(16,14,14),YV(16,14,14),ZV(16,14,14),CC(4)

DIM KX(16,14,14),KY(16,14,14),KZ(16,14,14)

REM USEFUL STUFF

SCREEN 9

WINDOW (0,-2)-(2,5)
XVP = -i0

YVP = i0

ZVP = i0

ND= 3

20 REM COORD DATA

REM

REM

LOCATE 13,20". INPUT "Enter choice: ",ICD

IF ICD = 1 THEN

LOCATE 15,20: INPUT "Enter data file name: ",DATNAM$

LOCATE 17,20: PRINT USING "Reading XX,YY,and ZZ from & "; DATNAM$

OPEN DATNAM$ FOR INPUT AS #i

INPUT #1,II,JJ
LOCATE 18,20: PRINT USING "Surface has ## x ## points..."; II,JJ

XL = i0000: YL = i0000: ZL = I0000

XM = -i0000: YM = -i0000: ZM = -i0000

FOR J = 1 TO JJ

FOR I = 1 TO II

INPUT #1,XX(I,J),YY(I,J),ZZ(I,J)

IF XX(I,J) < XL THEN XL s XX(I,J)
IF XX(I,J) > XM THEN XM - XX(I,J)

IF YY(I,J) < YL THEN YL - YY(I,J)

IF YY(I,J) > YM THEN YM = YY(I,J)
IF ZZ(I,J) < ZL THEN ZL = ZZ(I,J)

IF ZZ(I,J) > ZM THEN ZM = ZZ(I,J)

NEXT

NEXT

CLOSE #1

ELSE

LOCATE 15,20: PRINT "Generating XX,YY,and ZZ "

II = 5

JJ = 5

LOCATE 18,20: PRINT USING "Surface has ## x ## points..."; II,JJ
XL = I0000: YL = i0000: ZL = I0000

XM = -i0000: YM = -i0000: ZM = -i0000

FOR J = 1 TO JJ

YYY = (J - l)/(JJ - I)
FOR I = 1 TO II

XXX = (I - l)/(II - i)

XX(I,J) = XXX

YY(I,J) = YYY

R = (XXX - .5)^2 + (YYY - .5)^2

E = EXP(-3*SQR(R))

ZZ(I,J) = 4*(YYY - .5)^2 - 4*(XXX - .5)^2

IF XX(I,J) < XL THEN XL = XX(I,J)

IF XX(I,J) > XM THEN XM - XX(I,J)

IF YY(I,J) < YL THEN YL = YY(I,J)

IF YY(I,J) > YM THEN YM - YY(I,J)

IF ZZ(I,J) < ZL THEN ZL- ZZ(I,J)

IF ZZ(I,J) > ZM THEN ZM - ZZ(I,J)

NEXT

NEXT

END IF

XPL = YVP + (YVP - YL)*XVP/(XL - XVP)

XPM = YVP + (YVP - YM)*XVP/(XM - XVP)

YPL = ZVP + (ZVP - ZL)*XVP/(XL - XVP)

YPM = ZVP + (ZVP - ZM)*XVP/(XM - XVP)

DXW = XPM - XPL

YWM= YPM + .I*DYW

REM DRAWCOORDS IN SPACE

CLS

WINDOW (XWL,YWL)- (XWM,YWM)

FOR J = 1 TO JJ

XP = YVP + (YVP - yy(I,J))*XVP/(XX(I,J) - XVP)

YP = ZVP + (ZVP - ZZ(I,J))*XVP/(XX(I,J) - XVP)

PSET (XP,YP)
FOR I = 2 TO II

XP = YVP + (YVP - yY(I,J))*XVP/(XX(I,J) - XVP)

YP - ZVP + (ZVP - ZZ(I,J))*XVP/(XX(I,J) - XVP)

LINE -(XP,YP),II

NEXT

NEXT

FOR I = 1 TO II

XP = YVP + (YVP - yy(I,I))*XVP/(XX(I,I) - XVP)

YP = ZVP + (ZVP - ZZ(I,I))*XVP/(XX(I,I) - XVP)

PSET (XP,YP)
FOR J = 2 TO JJ

XP = YVP + (YVP - yy(I,J))*XVP/(XX(I,J) - XVP)

YP = ZVP + (ZVP - ZZ(I,J))*XVP/(XX(I,J) - XVP)

LINE -(XP,YP),II
NEXT

NEXT
DO: LOOP WHILE INKEY$ = ""

REM GET PC SPLINES THROUGH THE DATA

REM m_1 T-LINES (I-DIRECTION)

CLS

LOCATE 9,20: PRINT "Computing splines in T-direction.."

LOCATE 10,20: PRINT USING " (there are ## pts on each T line)"; II

LOCATE 12,20: PRINT "Which end condition do you want:"

LOCATE 13,20: PRINT " 1 - Natural (x'',y'',z'' = 0)"

LOCATE 14,20: PRINT " 2 - Periodic (matched slopes)"

LOCATE 15,20: PRINT " 3 - Slope (specified at ends)"

LOCATE 16,20: INPUT "Enter choice: ",ICE

IF ICE = 1 THEN CASES I "NATURAL"

IF ICE = 2 THEN CASES = "PERIODIC"

IF ICS = 3 THEN CASES = "SLOPE"

N = II

FOR J = 1 TO JJ

LOCATE 20,20: PRINT USING "Now doing T-Line ##"; J

FOR I = 1 TO II

X(I) - XX(I,J)

Y(I) = YY(I,J)

Z(I) = ZZ(I,J)
NEXT

GOSUB I000

FOR I = 1 TO II - 1

AXT(I,J) = AX(I)

BYT (I,J) = BY(1)

CYT (I,J) = CY(1)

AZT (l,J) = AZ(I)
BZT(I,J) = BZ(I)
CZT(I,J) = CZ(1)

IF J = JJ GOTO 70

KX(4,I,J) --AX(1)
KX(S,I,J) = SX(1)
KX(12,I,J) = CX(1)

KY(4,I,J) " AY(1)
KY(8,I,J) " BY(1)
KY(12,I,J) = CY(1)

KZ (4,I,J) "_AZ(I)
KZ(S,I,J) - BZ(1)
KZ (12,I,J) = CZ(I)

70 NEXT

NEXT

REM S-LINES (J-DIRECTION)

CLS

LOCATE 9,20 : PRINT ..Computing splines in s-direction- -"

LOCATE 10,20: PRINT USING " (there are ## pts on each S line)"; JJ

LOCATE 12,20: PRINT ..Which end cond-ition do you want:"

LOCATE 13,20: PRINT " 1 - Natural (x'',Y '',z'' = 0)"
LOCATE 14,20 : PRINT " 2 - Periodic (matched slopes)"

LOCATE 15,20: PRINT " 3 - Slope (specified at ends)"

LOCATE 16,20: INPUT .Enter choice: " ICE

IF ICE = 1 THEN CASES = ..NATURAL"
IF ICE = 2 THEN CASES = ..PERIODIC"

IF ICS = 3 THEN CASES = ,.SLOPE"

N =JJ
FOR I = 1 TO If

LOCATE 20,20: PRINT USING "Now doing S-Line ##";

FOR J = 1 TO JJ

X(J) - XX(I,J)
y(j) = YY(I,J)

z(J), = zz(I,J)
NEXT

I

GOSUB i000

FOR J = 1 TO JJ - 1

AXS(I,J) " AX(J)
BXS (I,J) = BX(J)
CXS(I,J) - CX(J)

AYS (I,J) = AY(J)
BYS(I,J) = BY(J)
CYS(I,J) = CY(J)

IF I = II GOTO 76

KX(13,I,J) = AX(J)

KX(14,I,J) = BX(J)

KX(15,I,J) = CX(J)

KY(13,I,J) = AY(J)

KY(14,I,J) = BY(J)

KY(15,I,J) = CY(J)

KZ(13,I,J) = AZ(J)

KZ(14,I,J) = BZ(J)

KZ(15,I,J) = CZ(J)

76 NEXT

NEXT

REM NOW DRAW THE CUBIC SPLINES

CLS

XWL = XWL + .3*DXW

XWM = XWM - .3*DXW

YWL = YWL + .3*DYW

YWM = YWM - .3*DYW

REM WINDOW (XWL, YWL) - (XWM, YWM)

FOR J = 1 TO JJ

FOR I = 1 TO II - 1

XP = YVP + (YVP - YY(I,J))*XVP/(XX(I,J) - XVP)

Yp = zvp + (zvp - zz(I,J)).xvP/(xx(I,J) - xvP)
PSET (XP, YP)
FOR T = 0 TO 1 STEP .099

XXX = XX(I,J) + ((AXT(I,J)*T + BXT(I,J))*T + CXT(I,J))*T

YYY = YY(I,J) + ((AYT(I,J)*T + BYT(I,J))*T + CYT(I,J))*T

ZZZ = ZZ(I,J) + ((AZT(I,J)*T + BZT(I,J))*T + CZT(I,J))*T

XP = YVP + (YVP - YYY)*XVP/(XXX - XVP)

Yp = zvP + (zvP - zzz),xvP/(xxx - xvp)
LINE - (XP, YP), 11

NEXT

NEXT

NEXT

FOR I = 1 TO II

FOR J = 1 TO JJ - 1

XP = YVP + (YVP- YY(I,J))*XVP/(XX(I,J) - XVP)

YP = ZVP + (ZVP - ZZ(I,J))*XVP/(XX(I,J) - XVP)

PSET (XP, YP)
FOR S = O TO 1 STEP .099

XXX = XX(I,J) + ((AXS(I,J)*S + BXS(I,J))*S + CXS(I,J))*S

YYY = YY(I,J) + ((AYS(I,J)*S + BYS(I,J))*S + CYS(I,J))*S

ZZZ - ZZ(I,J) + ((AZS(I,J)*S + BZS(I,J))*S + CZS(I,J))*S

XP = YVP + (YVP - YYY)*XVP/(XXX - XVP)

YP = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)

LINE -(XP,YP),II
NEXT

NEXT
NEXT

DO: LOOP WHILE INKEY$ = ""

REM S-DIRECTION FOR Xtt

FOR J = 1 TO JJ
XTT(II,J) = 6*AXT(II - l,J) + 2*BXT(II - l,J)

YTT(II,J) = 6*AYT(II - l,J) + 2*BYT(II - l,J)

ZTT(II,J) = 6*AZT(II - l,J) + 2*BZT(II - l,J)

FOR I = 1 TO II - 1

XTT(I,J) = 2*BXT(I,J)

YTT(I,J) = 2*BYT(I,J)

ZTT(I,J) = 2*BZT(I,J)

NEXT

NEXT

FOR I _ 1 TO II

FOR J s 1 TO JJ

X(J) s XTT(I,J)

y(j) - YTT(I,J)

Z(J) = ZTT(I,J)

NEXT

GOSUB i000

200

FOR J = 1 TO JJ - 1

IF I = II GOTO 200

KX(5, I,J) = .5*AX (J)

KX(6,I,J) = -5*BX(J)

KX(7,I,J) = -5*CX(J)

KY(S,I,J) = .5*AY(J)

KY(6,I,J) = .5*BY(J)
KY(7,I,J) = -5*CY(J)

KZ(5,I,J) = -5*AZ(J)

KZ(6,I,J) = .5*BZ(J)

KZ (7,I,J) = .5*CZ (J)

IF I = 1 GOTO 210

KX(I,I - 1,J) _ (AX(J) - 2*KX(5,1 - i,J))/6

KX(2,1 - l,J) = (BX(J) - 2*KX(6,I - 1,J))/6

xx(3,1 - 1,J) = (cx(J) - m,KX(V,I - 1,J))/_

KY(1,1 - 1,J) " (AY(J) - 2*KY(5,1 - l,J))/6

KY(2,1 - 1,J) - (BY(J) - 2*KY(6,1 - l,J))/6

Ey(3,1 - 1,J) = (c_(J) - 2,KY(V,I - I,J))/6

KZ(1,I - l,J) - (AZ(J) - 2*KZ(5,I - l,J})/6

z(2,1 - 1,J) = (sz(J) - 2,Kz(,I - i,j))/6
KZ(3,I - l,J) " (CZ(J) - 2*KZ(7,1 - l,J))/6

210 NEXT
NEXT

REM GET REMAINDER OF THE K'S

FOR J = 1 TO JJ - 1
FOR I = 1 TO II - 1

KX(9,I,J) = AXS(I + l,J) - AXS{I,J) - KX(I,I,J) - KX(5,I,J)

KX(10,I,J) = BXS(I + l,J) - BXS(I,J) - KX(2,I,J) - KX(6,I,J)

ItEM

REM a

300

KY(II,I,J) = CYS(I + 1,J) - CYS(I,J) - KY(3,I,J) - KY(7,I,J)

KZ(9,I,J) = AZS(I + l,J) - AZS(I,J) - KZ(I,I,J) - KZ(5,I,J)
KZ(10,I,J) = BZS(I + l,J) - BZS(I,J) - KZ(2,I,J) - KZ(6,I,J)
KZ(II,I,J) = CZS(I + l,J) - CZS(I,J) - KZ(3,I,J) - KZ(7,I,J)

NEXT

NEXT

NOW DRAW SOME LINES IN SOME PATCHES -

DX = .01

DY = .02

NODRW = 1

IF NODRW = 1 GOTO 450

...... PATCH IP,JP

SCR = 1

FOR JP = 1 TO JJ - 1

FOR IP = I TO II - i

FOR S = .25 TO .76 STEP .25

FOR T = 0 TO 1.01 STEP .05

XXX = XX(IP,JP)

YYY = YY(IP,JP)

ZZZ = ZZ(IP,JP)

FOR JT = 0 TO 3

TP " T^(3 - JT)
FOR JS = 0 TO 3

SP - S^(3 - JS)

K = (JS + i) + 4*JT
IF K > 15 GOTO 300

XXX = XXX + KX(K, IP,JP)*TP*SP

yyy = yyy + KY(K,IP,JP)*TP*SP

ZZZ = ZZZ + KZ(K,IP,JP)*TP*SP

NEXT

NEXT

XP = YVP + (YVP - yyy)*XVP/(XXX - XVP)

YP = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)
IF T = 0 THEN PSET (XP,YP)

LINE -(XP,YP),SCR

NEXT

NEXT

FOR T = .25 TO .76 STEP .25

FOR S = 0 TO 1.01 STEP .05

XXX = XX(IP,JP)
YYY = YY(IP,JP)

ZZZ = ZZ(IP,JP)

FOR JT = 0 TO 3

TP = T ^(3 - JT)
FOR JS = 0 TO 3

SP = S^(3 - JS)

K = (JS + i) + 4*JT

NEXT
NEXT

320 xP = YVP + (YVP - yyy).xvP/(XXX - xvP)
YP = zvP + (zvP - zzz),xvP/(XXX - xvP)
IF S = 0 THEN PSET (XP,YP)

LINE - (XP, YP) ,SCR

NEXT

NEXT

NEXT

NEXT

DO: LOOP WHILE INKEY$ - ""

450 REM

REM

......... NOW GET BEZIER CONTROL POINTS

CC

NO = 4

NF = 1

FOR IP = 1 TO NO - 1

NF = NF*IP

NEXT
FOR IP = 0 TO NO - 1

IFC = 1
FOR JP = 1 TO IP

IFC = IFC*JP

NEXT

FF = 1
FOR JP = 1 TO NO - IP - 1

FF = FF*JP

NEXT

CC(IP + i) = NF/(IFC*FF)
NEXT

REM--- CONTROL POINTS

FOR J = 1 TO JJ

FOR I = 1 TO II

PRINT USING "Computing bazier control points for ##,##..."; I,J

REM CORNERS

XV(O,I,J) = XX(I,J)
YV(0,I,J) = YY(I,J)

ZV(0,I,J) = ZZ(I,J)

XV(3,I,J) = XX(I + l,J)
YV(3,I,J) = YY(I + l,J)
ZV(3,I,J) -- ZZ(I + 1,J)

XV(12,I,J) = XX(I,J + i)

YV(12,I,J) = YY(I,J + I)

ZV(12,I,J) = ZZ(I,J + I)

XV(15,I,J) = XX(I + l,J + i)

YV(15,I,J) = YY(I + l,J + i)

ZV(15,I,J) = ZZ(I + l,J + i)

REM ON SIDE i (S=0)

XV(I,I,J) = XV(0,I,J) + CXT(I,J)/3

DYI = 3*AYT(I,J) + 2*BYT(I,J) + CYT(I,J)
DZI = 3*AZT(I,J) + 2*BZT(I,J) + CZT(I,J)

XV(2,I,J) = XV(3,I,J) - DXI/3

YV(2,I,J) = YV(3,I,J) - DYI/3

ZV(2,I,J) = ZV(3,I,J) - DZl/3

REM ON SIDE 2 (S=I)

XV(13,I,J) = XV(12,I,J) + CXT(I,J + 1)/3

YV(13,I,J) = YV(12,I,J) + CYT(I,J + 1)/3

ZV(13,I,J) = ZV(12,I,J) + CZT(I,J + 1)/3

DXl = 3*AXT(I,J + 1) + 2*BXT(I,J + 1) + CXT(I,J + 1)

DY1 " 3*AYT(I,J + 1) + 2*BYT(I,J + 1) + CYT(I,J + 1)

DZ1 s 3*AZT(I,J + 1) + 2*BZT(I,J + 1) + CZT(I,J + 1)

XV(14,I,J) " XV(15,I,J) - DXI/3

YV(14,I,J) 1 YV(15,I,J) - D¥I/3
ZV(14,I,J) = ZV(15,I,J) " DZI/3

REM ON SIDE 3 (T=0)

XV(4,I,J) -- XV(0,I,J) + CXS(I,J)/3

YV(4,I,J) 1 YV(0,I,J) + CYS(I,J)/3

ZV(4,I,J) = ZV(0,I,J) + CZS(I,J)/3

DX1 = 3*AXS(I,J) + 2*BXS(I,J) + CXS(I,J)

DY1 = 3*AYS(I,J) + 2*BYS(I,J) + CYS(I,J)

DZ1 = 3*AZS(I,J) + 2*BZS(I,J) + CZS(I,J)

XV(8,I,J) = XV(12,I,J) - DXI/3

YV(8,I,J) = YV(12,I,J) - DYI/3

ZV(8,I,J) " ZV(12,I,J) - DZI/3

REM ON SIDE 4 (T=I)

xv(v,I,J) - xv(3,I,J) + cxs(I + 1,J)/3
YV(7,I,J) = YV(3,I,J) + CYS(I + l,J)/3

ZV(7,I,J) = ZV(3,I,J) + CZS(I + l,J)/3

DXI = 3*AXS(I + l,J) + 2*BXS(I + l,J) + CXS(I + l,J)

DYI = 3*AYS(I + l,J) + 2*BYS(I + l,J) + CYS(I + l,J)

DZI = 3*AZS(I + l,J) + 2*BZS(I + l,J) + CZS(I + l,J)

XV(II,I,J) = XV(15,I,J) - DXI/3

YV(II,I,J) - YV(15,I,J) - DYI/3

ZV(II,I,J) = ZV(15,I,J)_- DZI/3

REM INTERIOR POINTS

REM POINT 5

XST = KX(11,I,J)

YST = KY(11,I,J)

ZST = KZ(ll,I,J)

XV(5,I,J) = XV(I,I,J) + XV(4,I,J) - XV(0,I,J) + XST/9
YV(5,I,J) = YV(I,I,J) + YV(4,I,J) - YV(0,I,J) + YST/9

ZV(5,I,J) = ZV(I,I,J) + ZV(4,I,J) - ZV(0,I,J) + ZST/9

REM POINT 6

XV(6,I,J) = XV(2,I,J) + XV(7,I,J) - XV(3,I,J) - XST/9

YV(6,I,J) = YV(2,I,J) + YV(7,I,J) - YV(3,I,J) - YST/9

ZV(6,I,J) " ZV(2,I,J) + ZV(7,I,J) - ZV(3,I,J) - ZST/9

REM POINT 9

XST = 3*KX(9,I,J) + 2*KX(10,I,J) + KX(ll,I,J)

YST = 3*KY(9,I,J) + 2*KY(10,I,J) + KY(II,I,J)

ZST = 3*KZ(9,I,J) + 2*KZ(10,I,J) + KZ(II,I,J)

XV(9,I,J) = XV(8,I,J) + XV(13,I,J) - XV(12,I,J) - XST/9

YV(9,I,J) = YV(8,I,J) + YV(13,I,J) - YV(12,I,J) - YST/9

ZV(9,I,J) " ZV(8,I,J) + ZV(13,I,J) - ZV(12,I,J) - ZST/9

REM POINT I0

XST = XST + 9*KX(I,I,J) + 6*(KX(2,I,J) + KX(5,I,J))

XST = XST + 4*KX(6,I,J) + 3*KX(3,I,J) + 2*KX(7,I,J)

YST = YST + 9*KY(I,I,J) + 6*(KY(2,I,J) + KY(5,I,J))

YST = YST + 4*KY(6,I,J) + 3*KY(3,I,J) + 2*KY(7,I,J)

ZST = ZST + 9*KZ(I,I,J) + 6*(KZ(2,I,J) + KZ(5,I,J))

ZST = ZST + 4*KZ(6,I,J) + 3*KZ(3,I,J) + 2*KZ(7,I,J)

XV(10,I,J) = XV(II,I,J) + XV(14,I,J) - XV(15,I,J) + XST/9

YV(10,I,J) = YV(II,I,J) + YV(14,I,J) - YV(15,I,J) + YST/9

ZV(10,I,J) = ZV(ll,I,J) + ZV(14,I,J) - ZV(15,I,J) + ZST/9

NEXT

NEXT

REM ,-- DRAW CONTROL POINTS

REM CLS
DX = .02

DY = .03

FOR J = 1 TO JJ
FOR I = 1 TO II

FOR IBP = 0 TO 15
XXX = XV(IBP,I,J)

yyy = YV(IBP,I,J)

ZZZ = ZV(IBP,I,J)
XP = YVP + (YVP - yyy),XVP/(XXX - XVP)

yp = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)

LINE (XP + DX,YP + DY)-(XP - DX,YP - DY),II,B

NEXT

FOR IBP = 0 TO 3
FOR JBP = 0 TO 3

IB = IBP + JBP*4

XXX = XV(IB,I,J)

yyy = YV(IB,I,J)

ZZZ = ZV(IB,I,J)
XP = YVP + (YVP - yyy),XVP/(XXX - XVP)

yp = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)

IF JBP = 0 THEN PSET (XP,YP)

LINE -(XP,YP),11

NEXT

NEXT

FOR JBP = 0 TO 3

FOR IBP = 0 TO 3
IB = IBP + JBP*4

REM

YP -- ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)

IF IBP = 0 THEN PSET (XP,YP)

LINE -(XP,YP) ,ll
NEXT

NEXT

NEXT

NEXT

NOW FILL IN SURFACE

FOR J = 1 TO JJ

FOR I = 1 TO II

NLP = 11

FOR S = .25 TO .76 STEP .25

FOR IP - 1 TO NLP

T- (IP- I)/(NLP- i)
XXX - XV(0,I - l,J - i)

YYY = YV(0,I - l,J - i)

ZZZ = ZV(0,I - l,J - i)
FOR L1 = 0 TO 3

L= L1 + 1

B2 = CC(L)*S^(L - I)*(I - S)^(NO - L)

FOR K1 = 0 TO 3
K = K1 + 1

IBP = K1 + LI*4

B1 = CC(K)*T^(K - I)*(i - T) A(NO - K)
XXX = XXX + BI*B2*XV(IBP,I,J)

yyy = YYY + BI*B2*YV(IBP,I,J)

ZZZ = ZZZ + BI*B2*ZV(IBP,I,J)

NEXT

NEXT

XD = YVP + (YVP - YYY)*XVP/(XXX - XVP)

YD = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)

IF IP = 1 THEN PSET (XD,YD)

LINE -(XD,YD),I0
NEXT

NEXT

FOR T = .25 TO .76 STEP .25

FOR IP = 1 TO NLP

S = (IP- I)/(NLP- i)

XXX = XV(0,I - l,J - i)

YYY = YV(0,I - 1,J - 1)

ZZZ = ZV(0,I - l,J - I)
FOR L1 = 0 TO 3

L= L1 + 1

B2 = CC(L)*S^(L - i)*(i - S)^(NO - L)
FOR K1 = 0 TO 3

K= K1 + 1

IBP = K1 + LI*4

B1 = CC(K)*T^(K - I)*(i - T)^(NO - K)
XXX = XXX + BI*B2*XV(IBP,IP,JP)

yyY = YYY + BI*B2*YV(IBP,IP,JP)

ZZZ = ZZZ + BI*B2*ZV(IBP, IP,JP)

NEXT

NEXT

XD = YVP + (YVP - YYY)*XVP/(XXX - XVP)

YD = ZVP + (ZVP - ZZZ)*XVP/(XXX - XVP)
IF IP = 1 THEN PSET (XD,YD)

LINE -(XD,YD),I0
NEXT

NEXT

END

i000 _M

_M

REM

REM

REM

_M

_M

REM

PC SPLINE SUBROUTINE

This subroutine takes the N coordinates in the arrays

X,Y,and Z,and generates the coefficients AX,BX,CX,AY,

BY,CY,AZ,BZ,CZ of the corresponding cubic spline through

the data.

REM SET UP MATRIX

T1 = TIMER

FOR KKK = 1 TO ND

FOR IT = 2 TO N - 2

C(IT) = 1

B(IT) = 4

A(IT) = 1
NEXT

REM RHS

x(o) = X(N): Y(0) = Y(N): Z(0) = Z(N)

FOR IT = 1 TO N - 1

IF KKK = 1 THEN

DD = X(IT + i) - 2*X(IT) + X(IT - i)
ELSEIF KKK = 2 THEN

DD = Y(IT + I) - 2*Y(IT) + Y(IT - i)
ELSE

DD = Z(IT + I) - 2*Z(IT) + Z(IT - i)

END IF

D(IT) = 3*DD
NEXT

REM CASES = "NATURAL"

IF CASES = "NATURAL" THEN

B(1) = 1

A(1) = 0

D(1) = 0

C(N - I) = 1
B(N - i) = 4
GOTO 2040

END IF

REM _w CASES = "PERIODIC"

IF CASES = "PERIODIC" THEN

B(1) = 4
A(1) = 1
F(1) = i
E(Z) = I
C(N - i) = 1
B(N - i) -- 4
FOR IT = 2 TO N - 1

E(IT) = 0
F(IT) = 0

REM CASES = "SLOPE"

IF CASES = "SLOPE" THEN

END IF

2040 REM SOLVE MATRIX

IF CASES = "PERIODIC" THEN

GOSUB 2100

ELSE

GOSUB 2000

END IF

REM NOW GET COEFFS
• m u_m

IF KKK = 1 THEN

FOR IT " 1 TO N - 1

BX (IT) = D(IT)
NEXT

FOR IT = 1 TO N - 2

AX(IT) = (BX(IT + i) - BX(IT))/3#

CX(IT) = X(IT + i) - X(IT) - AX(IT) - BX(IT)

NEXT

CX(N - I) = 3*AX(N - 2) + 2*BX(N - 2) + CX(N - 2)

AX(N - i) = X(N) - BX(N - i) - CX(N - i) - X(N - i)

ELSEIF KKK = 2 THEN
FOR IT = 1 TO N - 1

BY(IT) = D(IT)

NEXT
FOR IT = 1 TO N - 2

AY(IT) = (BY(IT + l) - BY(IT))/3#

CY(IT) :, Y(IT + I) - Y(IT) - AY(IT) - BY(IT)

NEXT
CY(N - i) = 3*AY(N - 2) + 2*BY(N - 2) + CY(N - 2)

AY(N - I) = Y(N) - BY(N - i) - CY(N - i) - Y(N - i)

ELSE
FOR IT = 1 TO N - 1

BZ (IT) = D(IT)

NEXT
FOR IT = i TO N - 2

AZ(IT) = (BZ(IT + i) - BZ(IT))/3#
CZ(IT) = Z(IT + I) - Z(IT) - AZ(IT) - BZ(IT)

NEXT
CZ(N - i) = 3*AZ(N - 2) + 2*BZ(N - 2) + CZ(N - 2)

AZ(N - i) = Z(N) - BZ(N - i) - CZ(N - I) - Z(N - I)

END IF

NEXT

T2 = TIMER

RETURN

END

2000 REM SUBROUTINE TSOLV

FOR IT = 2 TO N - 1

CBI = C(IT)/B(IT - i)

D(N - i) = D(N - I)/B(N - i)

FOR IR = 2 TO N - 1

IT = N - IR + 1

D(IT) = (D(IT) - A(IT)*D(IT + I))/B(IT)
NEXT

RETURN

2100 REM SUBROUTINE TSOLVP

REM

REM This routine is used for periodic tridiagonal systems

REM

REM

FOR IT - 2 TO N - 2

CBI = C(IT)/B(IT - I)

B(IT) = B(IT) - CBI*A(IT - I)

D(IT) = D(IT) - CBI*D(IT - i)

EBI = E(IT - I)/B(IT - i)

E(IT) = E(IT) - EBI*A(IT - I)

F(IT) = F(IT) - EBI*F(IT - i)

D(N - i) = D(N - i) - EBI*D(IT - i)
NEXT

CBI = C(N - 2)/B(N - 3)

B(N - 2) - B(N - 2) - CBI*A(N - 3)

A(N - 2) = A(N - 2) - CBI*F(N - 3)

D(N - 2) -- D(N - 2) - CBI*D(N - 3)

EBI = E(N - 3)/B(N - 3)

C(N - i) = C(N - I) - EBI*A(N - 3)

B(N - I) = B(N - i) - EBI*F(N - 3)

D(N - i) = D(N - I) - EBI*D(N - 3)

CBI = C(N - I)/B(N - 2)

B(N - I) = B(N - i) - CBI*A(N - 2)

D(N - i) = D(N - i) - CBI*D(N - 2)

F(N - l) = 0

F(N - 2) = 0

D(N) = D(N)/B(N)

FOR IR = 2 TO N

IT = N - IR + 1

D(IT) = (D(IT) - A(IT)*D(IT + I) - F(IT)*D(N))/B(IT)
NEXT

RETURN

Appendix B.

Method 2. Twist Derivative Method

REM PROGRAM BPCS4-Bi-Parametric Cubic Spline V.4

REM

REM
REM

REM

REM

REM

REM

REM
REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

This program replaces an array of Cubic Bezier patch

control points with another set which possess gradient and

curvature continuity across all patch boundaries.

This is done by fitting cubic splines along rows of

points in each direction. This provides C2 continuity along

patch boundaries. Twist derivatives are found on every corner

by fitting splines through the t-derivative of the cubics in
the s-direction.

V.4 No graphics version.

NPT

NPS
of patches in the t-direction

of patches in the s-direction

N

ND
of points fed to PC Spline subroutine

of space dimensions (ie. = 3 for 3D)

XV,YV,ZV

XX,YY,ZZ

X,Y,Z

II,JJ

Bezier Control point coordinates

Coordinate data from input patch corners

Data through which a spline is fit
of coords in T-direction,S-direction

(II = NPT+I,JJ - NPS+I)

AX,BX,CX

AY,BY,CY

AZ,BZ,CZ

Coeff's of splines for X from PCSSUB

Coeff's of splines for Y from PCSSUB

Coeff's of splines for Z from PCSSUB

FX,FY,FZ Coeff's of tensor-product matrix

DEFDBL A-H,O-Z
DEFINT I-N

ID = 16: JD = 7: KD = 7

DIM XX(ID,JD), YY(JD, KD), ZZ (ID,JD)

DIM X(ID) ,Y(JD) ,Z(KD)

DIM A(ID),B(ID),C(ID)

DIM AX(ID) ,BX(ID) ,CX(ID)

DIM AY (JD), BY (JD), CY (JD)

DIM AZ (KD), BZ (KD), CZ (KD)

DIM XV(ID,JD,KD) ,YV(ID,JD,KD) ,ZV(ID,JD,KD)

DIM FX(ID,JD,KD),FY(ID,JD,KD) ,FZ(ID,JD,KD)

REM USEFUL STUFF

ND= 3

REMm_m_m COORD DATA

DATNAM$ = "PATCHES"

PRINT USING "Reading Bezier control points from & "; DATNAM$

OPEN DATNAM$ FOR INPUT AS #i

INPUT #1,NPT,NPS

PRINT USING "There are ## x ## patches..."-, NPT,NPS

FOR J = 1 TO NPS

NEXT
NEXT

CLOSE #i

REM

II =NPT+ 1

JJ = NPS + 1

GET TWIST VECTORS ON OUTERMOST CORNERS

REM Corner at 0,0

FX(10,1,1) = 9*(XV(0,1,1) - XV(I,I,I) - XV(4,1,1) + XV(5,1,1))

F_(I0,I,1) - 9.(YV(0,I.1) - yV(I,I,I) - Yv(4,1,1) + yV(5,I,1))
FZ(10,1,1) - 9.(ZV(0,I,1) - ZV(I,I,I) - ZV(4,1,1) + ZV(5,1,1))

REM Corner at NPT, 0

FX(II,NPT, I) - 9.(XV(2,NPT,I)-XV(3,NPT,I)-XV(6,NPT,I) + XV(7,NPT,I))

FY(II,NPT,I) " 9.(YV(2,NPT,I)-YV(3,NPT,I)-YV(6,NPT,I) + YV(7,NPT,I))

FZ(II,NPT,I) = 9.(ZV(2,NPT,I)-ZV(3,NPT,I)-ZV(6,NPT,I) + ZV(7,NPT,I))

REM Corner at 0,NPS

FX(14,I,NPS) = 9.(XV(8,I,NPS)-XV(9,I,NPS)-XV(12,I,NPS) + XV(13,I,NPS)

) FY(14,I,NPS) = 9,(YV(8,I,NPS)-YV(9,I,NPS)-YV(12,I,NPS) + YV(13,I,NPS)

) FZ(14,I,NPS) = 9.(ZV(8,I,NPS)-ZV(9,I,NPS)-ZV(12,I,NPS) + ZV(13,I,NPS)

)

REM Corner at NPT,NPS

K= NPT

L = NPS

FX(15,K,L) = 9.(XV(10,K,L)-XV(II,K,L)-XV(14,K,L) + XV(15,K,L))

FY(15,K,L) = 9.(YV(10,K,L)-YV(II,K,L)-YV(14,K,L) + YV(15,K,L))

FZ(15,K,L) = 9.(ZV(10,K,L)-ZV(II,K,L)-ZV(14,K,L) + ZV(15,K,L))

END IF

REM
mm _un_....... GET CORNERS " "

FOR J = 1 TO JJ-i
FOR I = 1 TO II-i

XX(I,J) = XV(0,I,J)

YY(1,J) = _(o,1,J)
zz(I,J) - zv(0,1,J)

NEXT

XX(II,J) = XV (3 ,NPT,J)

YY (II,J) " YV (3,NPT,J}

ZZ (II,J) = ZV(3,NPT,J)

NEXT

FOR I = 1 TO II-i

XX(I,JJ) = XV(12,I,NPS)

YY(I,JJ) = YV(12,I,NPS)

ZZ(I,JJ) = ZV(12,I,NPS)

NEXT

XX(II,JJ) = XV(15,NPT,NPS)

EM u

REM

FOR I -- 1 TO NPT

FX(0,I,J) = XX(I,J)

FX(I,I,J) = XX(I+I,J)

FX(4,I,J) = XX(I,J+I)
FX(5,I,J) = XX(I+I,J+I)

FY(0,I,J) = YY(I,J)

FY(I,I,J) = YY(I+I,J)

FY(4,I,J) = YY(I,J+I)

FY(5,I,J) = YY(I+I,J+I)

FZ(0,I,J) " ZZ(I,J)

FZ(I,I,J) " ZZ(I+I,J)

FZ(4,I,J) " ZZ(I,J+I)

FZ(5,I,J) " ZZ(I+I,J+I)

NEXT

NEXT

GET PC SPLINES THROUGH THE DATA

T-LINES (I-DIRECTION)

CASES = "BEZIER"

N= II

FOR J = 1 TO JJ

IF J = JJ THEN

SIX = 3*(XV(13,I,NPS)-XV(12,I,NPS))

SlY = 3*(YV(13,I,NPS)-YV(12,I,NPS))

SIZ = 3*(ZV(13,I,NPS)-ZV(12,I,NPS))

S2X = 3*(XV(15,NPT,NPS)-XV(14,NPT,NPS))

S2Y = 3*(YV(15,NPT,NPS)-YV(14,NPT,NPS))

S2Z = 3*(ZV(15,NPT,NPS)-ZV(14,NPT,NPS))

ELSE

SIX = 3*(XV(I,I,J)-XV(0,I,J))

SIY = 3*(YV(I,I,J)-YV(0,I,J))

SIZ = 3*(ZV(I,I,J)-ZV(0,I,J))
S2X = 3*(XV(3,NPT,J)-XV(2,NPT,J))

S2Y = 3*(YV(3,NPT,J)-YV(2,NPT,J))

S2Z = 3*(ZV(3,NPT,J)-ZV(2,NPT,J))

END IF

FOR I = 1 TO II

X(I) = XX(I,J)

Y(I) = YY(I,J)

Z(I) = ZZ(I,J)
NEXT

GOSUB i000

FOR I = 1 TO II-I

IF J = 1 GOTO 68

FX(6,I,J-I) = CX(I)

FY(6,I,J-I) = CY(I)

FZ(6,I,J-I) = CZ(I)

FX(7,I,J-I) = 3*AX(I) + 2*BX(I) + CX(I)

FY(7,I,J-I) = 3*AY(I) + 2*BY(I) + CY(I)

FX(2,I,J) = CX(I)
FY(2,I,J) = CY(I)
FZ(2,I,J) = CZ(I)

FX(3,I,J) = 3*AX(I) + 2*BX(I) + CX(I)

FY(3,I,J) = 3*AY(I) + 2*BY(I) + CY(I)

FZ(3,I,J) = 3*AZ(I) + 2*BZ(I) + CZ(1)

70 NEXT

NEXT

REM S-LINES (J-DIRECTION)

CASES - "BEZIER"

N =JJ

FOR I = 1 TO II

IF I - II THEN

SIX = 3*(XV(7,NPT,I)-XV(3,NPT,I))

SIY = 3*(YV(7,NPT, I)-YV(3,NPT,I))

SIZ = 3*(ZV(7,NPT,I)-ZV(3,NPT, I))

S2X = 3*(XV(15,NPT,NPS)-XV(II,NPT,NPS))

S2Y -- 3*(YV(15,NPT,NPS)-YV(II,NPT,NPS))

S2Z = 3*(ZV(15,NPT,NPS)-ZV(II,NPT,NPS))
ELSE

SIX = 3*(XV(4,I,I)-XV(0,I,I))

SlY = 3*(YV(4,I,I)-YV(O,I,I))

SIZ = 3*(ZV(4,I,I)-ZV(0,I,I))

S2X = 3*(XV(12,I,NPS)-XV(8,I,NPS))

S2Y = 3*(YV(12,I,NPS)-YV(8,I,NPS))
S2Z = 3*(ZV(12,I,NPS)-ZV(8,I,NPS))

END IF

FOR J = 1 TO JJ

X(J) = XX(I,J)

Y(J) = YY(I,J)

Z(J) = ZZ(I,J)
NEXT

GOSUB 1000

FOR J = 1 TO JJ-l

IF I = II GOTO 74

FX(8,I,J) = CX(J)

FY(8,I,J) = CY(J)

FZ(8,I,J) = CZ(J)

FX(12,I,J) = 3*AX(J) + 2*BX(J) + CX(J)
FY(12,I,J) = 3*AY(J) + 2*BY(J) + CY(J)

FZ(12,I,J) = 3*AZ(J) + 2*BZ(J) + CZ(J)

74 IF I = I GOTO 76

FX(9,I-I,J) = CX(J)

FY(9,I-I,J) = CY(J)

FZ(9,I-I,J) -- CZ(J)

FX(13,I-I,J) = 3*AX(J) + 2*BX(J) + CX(J)

FY(13,I-I,J) = 3*AY(J) + 2*BY(J) + CY(J)

REM

REM

REM

NEXT

NEXT PUT SPLINES THROUGH THE FIRST DERIVATIVES

PUT SPLINE THROUGH S-DERIV'S ALONG S=0 & S=I

S=0 (J=l) EDGE

N= II

CASES = "BEZIER"

SIX = FX(10,1,1)

SlY = FY(10,1,1)

SIZ - FZ(10,1,1)

S2X = FX(II,NPT,I)

S2Y = FY(11,NPT,I)

S2Z = FZ(II,NPT,I)

FOR I = 1 TO NPT

X(I) = FX(8,I,I)

Y(I) = FY(8,I,I)

Z(I) = FZ(8,I,I)

NEXT

X(II) = FX (9,NPT, I)

Y(II) = FY(9,NPT,I)

Z(II) = FZ(9,NPT,I)

GOSUB i000

FOR I = 1 TO NPT

IF I = i GOTO 412

FX(10,I,I) - CX(I)

FY(10,I,I) = CY(I)

FZ(10,I,I) = CZ(I)

412 IF I = NPT GOTO 414

FX(II,I,I) = 3*AX(I) + 2*BX(1) + CX(I)

FY(II,I,I) = 3*AY(I) + 2*BY(I) + CY(1)

FZ(II,I,I) = 3*AZ(I) + 2*BY(I) + CZ(I)

414 NEXT

REM S=I (J=JJ) EDGE

SIX= FX(14,1,NPS)

SlY = FY(14,1,NPS)

SIZ = FZ(14,I,NPS)

S2X = FX(15,NPT,NPS)

S2Y = FY(15,NPT,NPS)

S2Z = FZ(15,NPT,NPS)

FOR I = 1 TO NPT

NEXT

X(II) -= FX(13,NPT,NPS)

Y(II) = FY(13,NPT,NPS)

Z(II) = FZ(13,NPT,NPS)

GOSUB 1000

FOR I = 1 TO NPT

IF I = 1 GOTO 422

FX(14,I,NPS) - CX(1)

FY(14,I,NPS) - CY(I)

FZ(14,I,NPS) - CZ(1)

422 IF I ,, NPT GOTO 424

FX(15,I,NPS) " 3*AX(I) + 2*BX(I) + CX(I)

FY(15,I,NPS) = 3*AY(I) + 2*BY(I) + CY(I)

FZ(15,I,NPS) = 3*AZ(I) + 2*BZ(I) + CZ(I)

424 NEXT

REM NOW SPLINE T-DERIV'S IN S-DIRECTION

FOR I = 1 TO II

IF I = II THEN

SIX = FX(11,NPT, 1)

SlY = FY(I1,NPT,I)

SIZ = FZ(I1,NPT,I)

S2X = FX(15,NPT,NPS)

S2Y = FX(15,NPT,NPS)

S2Z = FZ(15,NPT,NPS)

ELSE

SIX = FX(10,I,I)

SlY = FY(10,I,I)

SIZ = FZ(10,I,I)

S2X = FX(14,I,NPS)
S2Y = FY(14,I,NPS)

S2Z = FZ(14,I,NPS)

END IF

FOR J = 1 TO NPS

IF I = II THEN

X(J) = FX (3,NPT, J)

y(J) = FY(3,NPT,J)

Z(J) = FZ(3,NPT,J)

ELSE

X(J) = FX(2,I,J)

Y(J) = FY(2,I,J)

NEXT

IF I = II THEN

X(JJ) = FX (7,NPT,NPS)
y(jj) -_ Fy(V,NPT,NPS)
Z(JJ) = FZ(7,NPT,NPS)

ELSE

X(JJ) = FX (6, I,NPS)

y(jj) -- FY(6,I,NPS)

Z(JJ) " FZ(6,I,NPS)

END IF

GOSUB I000

FOR J " 1 TO NPS

IF I = 1 GOTO 432

432

FX(II, I-i,J) = CX(J)

FY(II,I-I,J) = CY(J)

FZ(II,I-I,J) = CZ(J)

FX(15,I-I,J) = 3*AX(J) + 2*BX(J) + CX(J)

FY(15,I-I,J) = 3*AY(J) + 2*BY(J) + CY(J)

FZ(15,1-I,J) = 3*AZ(J) + 2*BZ(J) + CZ(J)

IF I = II GOTO 434

Fx(1o,I,J) - cx(J)
FY(10,I,J) = CY(J)

FZ(10,I,J) = CZ(J)

FX(14,I,J) = 3*AX(J) + 2*BX(J) + CX(J)

FY(14,I,J) = 3*AY(J) + 2*BY(J) + CY(J)
FZ(14,I,J) = 3*AZ(J) + 2*BZ(J) + CZ(J)

434 NEXT

NEXT

REM COMPUTE THE BEZIER CONTROL POINTS

DX = .01

DY = .02

FOR JP = 1 TO NPS

FOR IP = 1 TO NPT

REM CORNERS

XV(0,1P,JP) = XX(IP,JP)

YV(0,IP,JP) = YY(IP,JP)

ZV (0, IP,JP) = ZZ (IP,JP)

XV(3, IP,JP) = XX (IP+I, JP)

YV(3,IP,JP) = YY(IP+I,JP)

ZV(3,IP,JP) = ZZ(IP+I,JP)

XV(15,IP,JP) -- XX(IP+I,JP+I)

YV(15,IP,JP) -- YY(IP+I,JP+I)

ZV(15,IP,JP) - ZZ(IP+I,JP+I)

REM ON SIDE 1 (S=0)

XV(I,IP,JP) = XV(0,IP,JP) + FX(2,IP,JP)/3

YV(I,IP,JP) = YV(0,IP,JP) + FY(2,IP,JP)/3

ZV(I,IP,JP) = ZV(0,IP,JP) + FZ(2,IP,JP)/3

XV(2,IP,JP) ,, XV(3,IP,JP) - FX(3,IP,JP)/3

YV(2,IP,JP) ,_ YV(3,IP,JP) - FY(3,IP,JP)/3

ZV(2,IP,JP) ,, ZV(3,IP,JP) - FZ(3,IP,JP)/3

REM ON SIDE 2 (Szl)

XV(13,IP,JP) ,, XV(12,IP,JP) + FX(6,IP,JP)/3

YV(13,IP,JP) ,, YV(12,IP,JP) + FY(6,IP,JP)/3

ZV(13,IP,JP) ,, ZV(12,IP,JP) + FZ(6,IP,JP)/3

XV(14,IP,JP) = XV(15,IP,JP) - FX(7,IP,JP)/3

YV(14,IP,JP) = YV(15,IP,JP) - FY(7,IP,JP)/3

ZV(14,IP,JP) = ZV(15,IP,JP) - FZ(7,IP,JP)/3

REM- ON SIDE 3 (T=0)

XV(4,IP,JP) = XV(0,IP,JP) + FX(8,IP,JP)/3

YV(4,IP,JP) = YV(0,IP,JP) + FY(8,IP,JP)/3

ZV(4,IP,JP) = ZV(0,IP,JP) + FZ(8,IP,JP)/3

XV(8,IP,JP) = XV(12,IP,JP) - FX(12,IP,JP)/3

YV(8,IP,JP) = YV(12,IP,JP) - FY(12,IP,JP)/3

ZV(8,IP,JP) = ZV(12,IP,JP) - FZ(12,IP,JP)/3

REM-- ON SIDE 4 (T=I)

XV(7,IP,JP) ,, XV(3,IP,JP) + FX(9,IP,JP)/3

YV(7,IP,JP) = YV(3,IP,JP) + FY(9,IP,JP)/3

ZV(7,IP,JP) = ZV(3,IP,JP) + FZ(9,IP,JP)/3

XV(II,IP,JP) = XV(15,IP,JP) - FX(13,IP,JP)/3

YV(II,IP,JP) = YV(15,IP,JP) - FY(13,IP,JP)/3

ZV(II,IP,JP) = ZV(15,IP,JP) - FZ(13,IP,JP)/3

REM INTERIOR POINTS

REM POINT 5

XST " FX(10,IP,JP)

YST = FY(10,IP,JP)

ZST = FZ(10,IP,JP)

XV(5,IP,JP) -- XV(I,IP,JP) + XV(4,IP,JP) - XV(0,IP,JP) + XST/9

YV(5,IP,JP) = YV(I,IP,JP) + YV(4,IP,JP) - YV(0,IP,JP) + YST/9

ZV(5,IP,JP) = ZV(I,IP,JP) + ZV(4,IP,JP) - ZV(0,IP,JP) + ZST/9

REM- POINT 6

XST = FX(11,IP,JP)

YST = FY(ll,IP,JP)

ZST = FZ(II,IP,JP)

REM POINT 9

XST = FX(14,IP,JP)

YST = FY(14,IP,JP)

ZST = FZ(14,IP,JP)

XV(9,IP,JP) = XV(8,IP,JP) + XV(13,IP,JP) - XV(12,IP,JP) - XST/9

YV(9,IP,JP) = YV(8,IP,JP) + YV(13,IP,JP) - YV(12,IP,JP) - YST/9

ZV(9,IP,JP) = ZV(8,IP,JP) + ZV(13,IP,JP) - ZV(12,IP,JP) - ZST/9

REM POINT I0

XST = FX(15,IP,JP)

YST = FY(15,IP,JP)

ZST - FZ(15,IP,JP)

XV(10,IP,JP) - XV(II,IP,JP) + XV(14,IP,JP) - XV(15,IP,JP) + XST/9

YV(10,IP,JP) = YV(II,IP,JP) + YV(14,IP,JP) - YV(15,IP,JP) + YST/9

ZV(10,IP,JP) = ZV(II,IP,JP) + ZV(14,IP,JP) - ZV(15,IP,JP) + ZST/9

NEXT

NEXT

990 REM THAT'S ALL

END

i000 _M-

_M

_M

_M

_M

_M

_M

_M

..... PC SPLINE SUBROUTINE

This subroutine takes the N coordinates in the arrays

X,Y,and Z,and generates the coefficients AX,BX,CX,AY,

BY,CY,AZ,BZ,CZ of the corresponding cubic spline through

the data.

REM SET UP MATRIX

FOR KKK = 1 TO ND

FOR IT = 2 TO N-2

C(IT) = 1

B(IT) = 4

A(IT) = 1
NEXT

REM RHS

X(0) = X(N) : Y(0) = Y(N) : Z(0) = Z(N)

FOR IT = 1 TO N-I
IF KKK = 1 THEN

DD = X(IT + I)-2*X(IT) + X(IT-I)

ELSEIF KKK = 2 THEN

DD = Y(IT + I)-2*Y(IT) + Y(IT-I)

ELSE

DD = Z(IT + I)-2*Z(IT) + Z(IT-I)

END IF

D(IT) = 3*DD
NEXT

REM CASES = "NATURAL"

C(N-I) = i
B(N-I) = 4
GOTO 2040

END IF

REM CASES = "BEZIER"

IF CASES = "BEZIER" THEN

B(1) -- 2/3

A(1) = i13

B(N-I) = 7/3

C(N-I) = 2/3
IF KKK -, 1 THEN

D(1) = (X(2)-X(1))-SlX
D(N-I) ,, 3*(X(N)-X(N-I))-2*(X(N-I)-X(N-2))-S2X

ELSEIF KKK = 2 THEN

D(1) - (Y(2)-Y(1))-SIY
D(N-I) = 3*(Y(N)-Y(N-1))-2*(Y(N-I)-Y(N-2))-S2Y

ELSE

D(1) = (Z (2) -Z (1))-SIZ

D(N-I) = 3* (Z (N) -Z (N-I))-2* (Z (N-I) -Z (N-2))-S2Z
END IF

END IF

2040 REM SOLVE MATRIX

GOSUB 2000

REM NOW GET COEFFS

IF KKK = 1 THEN

FOR IT = 1 TO N-I

BX(IT) =, D(IT)
NEXT

FOR IT = 1 TO N-2

AX(IT) = (BX(IT + I)-BX(IT))/3

CX(IT) = X(IT + I)-X(IT)-AX(IT)-BX(IT)
NEXT

CX(N-I) = 3*AX(N-2) + 2*BX(N-2) + CX(N-2)

AX(N-I) = X(N)-BX(N-I)-CX(N-I)-X(N-I)
ELSEIF KKK = 2 THEN

FOR IT -- 1 TO N-I

BY(IT) = D(IT)
NEXT

FOR IT = 1 TO N-2

AY(IT) = (BY(IT + 1)-BY(IT))/3

CY(IT) = Y(IT + I) -Y (IT) -AY (IT) -BY (IT)
NEXT

CY(N-I) = 3*AY(N-2) + 2*BY(N-2) + CY(N-2)

AY(N-I) = Y(N)-BY(N-I)-CY(N-I)-Y(N-I)
ELSE

FOR IT = 1 TO N-I

BZ(IT) = D(IT)
NEXT

FOR IT = i TO N-2

AZ(IT) = (BZ(IT + I)-BZ(IT))/3

CZ(IT) = Z(IT + I) -Z (IT) -AZ (IT) -BZ (IT)
NEXT

CZ(N-I) = 3*AZ(N-2) + 2*BZ(N-2) + CZ(N-2)

AZ (N-I) = Z (N)-BZ (N-1)-CZ (N-1)-Z (N-I)
END IF

2000 REM SUBROUTINE TSOLV

FOR IT = 2 TO N-I

CBI = C(IT)/B(IT-I)

B(IT) = B(IT)-CBI*A(IT-I)

D(IT) = D(IT)-CBI*D(IT-I)
NEXT

D(N-I) = D(N-I)/B(N-I)

FOR IR = 1 TO N-2

IT = N-IR-I

D(IT) = (D(IT)-A(IT)*D(IT + I))/B(IT)
NEXT

RETURN

